

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

| Course Name:               | System Development and Programming with the ADSP-TS101 (TigerSHARC)                                |
|----------------------------|----------------------------------------------------------------------------------------------------|
| Course Number:             | ADST-160                                                                                           |
| <b>Course Description:</b> | This is a practical course with 'hands on' training using the latest VisualDSP++ software          |
| -                          | development tools. First the core elements of the processor, which includes the Computational      |
|                            | Units, the Integer ALUs, and the Program Sequencer, are examined in detail along with the relevant |
|                            | assembly code instructions. A number of simulator labs help in understanding operation of the      |
|                            | individual elements. Memory configuration (both internal and external) is discussed next.          |
|                            | Advanced instructions are presented with a follow on lab on code optimization. The I/O             |
|                            | peripherals, which include the Link Ports and External Port, are discussed in detail along with    |
|                            | DMA operation between these peripherals and internal memory. This section also deals with          |
|                            | system booting and other features including timers and SDRAM controller. Finally, hardware         |
|                            | development tools, such as evaluation boards and ICE's are introduced. Throughout the course, the  |
|                            | various aspects of the software development process using the latest tools are discussed including |
|                            | setting up and building projects, assembly language programming, code debugging, simulation, tool  |
|                            | support for code overlays and shared memory, and C programming support.                            |
| Goals/Objectives:          | The main course objective is to understand the architecture of the ADSP-1S101 DSP sufficiently to  |
|                            | enable DSP system designers to resolve hardware/software issues with their applications.           |
|                            | Additional goals include gaining a thorough understanding of both assembly language                |
|                            | tools                                                                                              |
| Dro roquisitos:            | Dravious ambedded microprocessor background would be an asset (bardware and/or software)           |
| Tre-requisites:            | Previous embedded microprocessor background would be an asset (nardwate and/or sortwate)           |
| Target Audience:           | System Designers needing to make informed decisions on design tradeoffs, Hardware Designers        |
|                            | needing to develop external interfaces, and Code Developers needing to know how to get the         |
|                            | highest performance from their algorithms                                                          |
| <b>Target Duration:</b>    | 3.5 days                                                                                           |

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

- 1 Introduction
  - 1.1 Introductions/ Course Overview
    - 1.1.1 Purpose of the Course
    - 1.1.2 Course Overview
    - 1.1.3 Logistics (breaks, lunch, etc.)
    - 1.1.4 Course Handouts
    - 1.1.5 DSP at Analog
    - 1.1.6 Analog Devices strategy
    - 1.1.7 Signal Processor Portfolio
  - 1.2 Introduction to ADSP-TS101
    - 1.2.1 Characteristics of a Good DSP
    - 1.2.2 ADSP-TS101 Features
- 2 Introduction to Software Tools (VisualDSP)
  - 2.1 Software Tools Overview
    - 2.1.1 **Project development**
    - 2.1.2 VisualDSP Overview
    - 2.1.3 Assembler Overview
    - 2.1.4 Linker Overview
    - 2.1.5 Loader Overview
    - 2.1.6 Integrated Development and Debug Environment (IDDE)
    - 2.1.7 VisualDSP Debug Features
- 3 Computational Block Data Register
  - 3.1 Registers and Data Types
  - 3.2 Register types overview
  - 3.3 Register File
  - 3.4 Native data types and data word alignment
    - 3.4.1 Fixed point
    - 3.4.2 Floating point
  - 3.5 Simulator Exercise: registers exercise, basic simulator operation



Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

- 4 Computational Block ALU
  - 4.1 Features
  - 4.2 Instructions
  - 4.3 Flags
  - 4.4 Simulator Exercise: ALU operation
- 5 Computational Block Multiplier/MAC
  - 5.1 Features
  - 5.2 Instructions
  - 5.3 Flags
  - 5.4 Fractional and integer math
  - 5.5 Simulator Exercise: MAC operation
- 6 Computational Block Shifter
  - 6.1 Features
  - 6.2 Instructions
  - 6.3 Flags
  - 6.4 Simulator Exercise: Shifter operation
- 7 Integer ALU's (IALU)
  - 7.1 Features
  - 7.2 Instructions
  - 7.3 Immediate data move instructions
  - 7.4 Modulo addressing example
  - 7.5 Simulator Exercise: Address Generation operation

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

- 8 Memory
  - 8.1 TigerSHARC Memory
    - 8.1.1 Memory Basics

ENGINEERING

- 8.1.2 Memory Maps
- 8.1.3 Internal Architecture
- 8.2 TigerSHARC Internal SRAM
  - 8.2.1 Internal SRAM Architecture
  - 8.2.2 Memory Overhead Considerations
  - 8.2.3 Internal Memory Maps
- 9 Program Sequencer
  - 9.1 Features
  - 9.2 Instructions
  - 9.3 Instruction pipeline
  - 9.4 Branching
  - 9.5 Looping
  - 9.6 Interrupts
- 10 Assembly Code Development with VisualDSP++
  - 10.1 Assembler
    - 10.1.1 Assembler Expressions
    - 10.1.2 Assembler Directives
    - 10.1.3 Definition files
  - 10.2 Basic Linker Description File (LDF)
    - 10.2.1 Introduction
    - 10.2.2 Overview
    - 10.2.3 Example LDF File
    - 10.2.4 Example Commands
  - 10.3 VisualDSP Simulator
    - 10.3.1 Overview
    - 10.3.2 Simulator features
    - 10.3.3 Simulator Exercise: basic code development exercise

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

- 11 Advanced Instruction Types
  - 11.1 Communications Instructions
  - 11.2 Reciprocal and Divide
  - 11.3 Reciprocal Square Root and Square Root

#### 12 Code Optimization

- 12.1 Parallel Instruction Types and Multifunction Computations
- 12.2 Optimization techniques
- 12.3 Simulator Exercise: code optimization

#### 13 I/O Processor

- 13.1 IOP Structure
  - 13.1.1 I/O Processor Features
- 13.2 DMA Unit
  - 13.2.1 DMA Architecture
  - 13.2.2 DMA Features
  - 13.2.3 DMA modes & examples
  - 13.2.4 External Port DMA
- 13.3 External Port
  - 13.3.1 Memory Interface
  - 13.3.2 Shared Bus Multiprocessing (Cluster mode)
  - 13.3.3 Host Interface
- 13.4 SDRAM interface
- 13.5 Link Port
  - 13.5.1 Link Port Features
  - 13.5.2 Link Port Configuration—DMA & Control
  - 13.5.3 Link Port Pin Description & Function
- 13.6 Timers

ADST-160

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

## 14 Booting

- 14.1 Loader Utility
- 14.2 Boot Loader Process
- 14.3 Multiprocessor booting

#### 15 System Design

- 15.1 Navigating the Datasheet
- 15.2 Example system configuration
- 15.3 Memory Timing
- 15.4 Design guidelines
- 15.5 JTAG overview
- 15.6 ICE emulator header connector

### 16 Advanced LDF Features

- 16.1 Features
- 16.2 Shared Memory
- 16.3 Multi-Processing
- 16.4 Software Overlays
- 17 VisualDSP++ C Compiler
  - 17.1 C Compiler Features and use in Embedded Systems
  - 17.2 Configuring C Compiler via IDDE
  - 17.3 LDF for C Compiler
    - 17.3.1 Stacks
  - 17.4 Run Time Header
  - 17.5 Interrupt Handling with C Code
  - 17.6 Register Usage and Data Types
  - 17.7 Assembly Language Interface
  - 17.8 C Callable Assembly Functions
  - 17.9 C Code Optimization

Outline: System Development and Programming with the ADSP-TS101 (TigerSHARC)

18 TigerSHARC Hardware Tools

ENGINEERING

18.1 Hardware Tool Overview with part numbers

- 18.2 ADSP-TS101 EZ-KIT
  - 18.2.1 Hardware
  - 18.2.2 Software
- 18.3 In Circuit Emulators
  - 18.3.1 ICE Configurator

# **Conclusion/Questions**