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Course Name:  System Development and Programming with the ADSP-21160 
Course Number: ADST-120 
Course Description:  This is a practical course with ‘hands on’ training using the latest VisualDSP++ software 

development tools.  First the core elements of the processor, which includes the Computational 
Units, the Data Address Generators, and the Program Sequencer, are examined in detail along with 
the relevant assembly code instructions.  A number of simulator labs help in understanding 
operation of the individual elements.  Memory configuration (both internal and external) is 
discussed next.  Advanced instructions are presented with a follow on lab on code optimization.  
The I/O peripherals, which include the SPORTS, Link Ports, and External Port, are discussed in 
detail along with DMA operation between these peripherals and internal memory.   This section 
also deals with system booting and SBSRAM interfacing. Hardware development tools, such as 
evaluation boards and ICE’s are introduced.  Throughout the course, the various aspects of the 
software development process using the latest tools are discussed including setting up and building 
projects, assembly language programming, code debugging, simulation, tool support for code 
overlays and shared memory, and ‘C’ programming support. 

Goals/Objectives:  The main course objective is to understand the architecture of the ADSP-21160 DSP sufficiently to 
enable DSP system designers to resolve hardware/software issues with their applications.  
Additional goals include gaining a thorough understanding of both assembly language 
programming and code development (including ‘C’ programming issues) with the latest software 
tools 

Pre-requisites:  Previous embedded microprocessor background would be an asset (hardware and/or software) 
Target Audience:  System Designers needing to make informed decisions on design tradeoffs, Hardware Designers 

needing to develop external interfaces, and Code Developers needing to know how to get the 
highest performance from their algorithms 

Target Duration:  3.5 days 
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1 Introduction 

1.1 Introductions/ Course Overview 

1.1.1 Purpose of the Course 

1.1.2 Course Overview 

1.1.3 Logistics (breaks, lunch, etc.) 

1.1.4 Course Handouts 

1.1.5 DSP at Analog 

1.1.6 Analog Devices Strategy 

1.1.7 Signal Processor Portfolio 

 

1.2 Introduction to ADSP-21160 

1.2.1 Characteristics of a Good DSP 

1.2.2 ADSP-21000 Family Features 

1.2.3 Modified Harvard Architecture 

1.2.4 ADSP-21160 Basic System Configuration 

 

2 Introduction to Software Tools (VisualDSP++) 

2.1 VisualDSP Overview  

2.2 Software Tools Overview 

2.2.1 Development Flow 

2.2.2 Invoking Tools and Switches 

2.2.3 IDDE (Integrated Development/Debug Environment) 

2.2.3.1 Features 

2.2.3.2 Projects 

2.2.3.3 Property Pages 

2.2.3.4 Debug Sessions 

2.2.3.5 Online Help 
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3 The ADSP-21K Family Core Architecture - Part I 

3.1 The ADSP-21000 Family Core Internal Architecture 

3.1.1 Registers and Data Types 

3.1.2 Register types: UREG, SREG, DREG - overview 

3.1.3 Register File  

3.1.4 Native data types and data word alignment 

3.1.5 Fixed point - 32 bit integer, fractional 

3.1.6 Floating point - 32 bit single precision, 40 bit extended single precision 

3.1.7 Simulator Exercise:  registers exercise, basic simulator operation 

 

3.2 ALU 

3.2.1 Features 

3.2.2 Instructions 

3.2.3 Flags 

3.2.4 Simulator Exercise: ALU operation 

3.2.5 Mini-Quiz 

 

3.3 Multiplier/MAC 

3.3.1 Features 

3.3.2 Instructions 

3.3.3 Flags 

3.3.4 Fractional and integer math 

3.3.5 Simulator Exercise: MAC operation 

3.3.6 Mini-Quiz 
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3.4 Shifter 

3.4.1 Features 

3.4.2 Instructions 

3.4.3 Flags 

3.4.4 Simulator Exercise:  Shifter operation 

3.4.5 Mini-Quiz 

 

4 The ADSP-21K Family Core Architecture - Part II 

4.1 Internal Core Architecture Review 

4.2 Data Address Generators (DAGs) 

4.2.1 Features 

4.2.2 Instructions 

4.2.3 Immediate data move instructions 

4.2.4 Modulo addressing example 

4.2.5 Simulator Exercise:  DAG operation 

4.2.6 Mini-Quiz 

 

4.3 Program Sequencer 

4.3.1 Features 

4.3.2 Instructions 

4.3.3 Instruction pipeline 

4.3.4 Branching, Delayed branching 

4.3.5 Zero overhead looping 

4.3.6 Instruction cache, PM data access 

4.3.7 Interrupts 

4.3.8 Status and Mode registers / USTAT registers 

4.3.9 System register bit operations 

 

4.4 Timer  

4.4.1 Features 
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5 Memory 

5.1 SHARC Memory  

5.1.1 SHARC Memory Basics 

5.1.2 SHARC Memory Map 

5.1.3 SHARC Internal Architecture 

 

5.2 SHARC Internal SRAM  

5.2.1 Internal SRAM Architecture 

5.2.2 Memory Access Considerations  

5.2.3 Internal Memory Maps 

5.2.4 Configuring Internal Memory 

5.2.4.1 32 bit vs 40 bit Data 

5.2.4.2 48 bit Instructions 

5.2.4.3 Mixing 32 bit and 48 bit words in one block 

5.2.5 Example LDF Memory Section 

 

6 Assembly Code Development with VisualDSP++ 

6.1 Project Development 

6.1.1 Project Options 

6.1.2 Build Configurations 

6.1.3 Building Projects 

6.2 Assembly 

6.2.1 Build Process 

6.2.2 Sections 

6.2.3 Controlling Assembler through Directives and Operators 

6.2.4 Preprocessor 

6.2.5 Symbolic Names 
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6.3 Basic Linker Description File (LDF) 

6.3.1 Introduction 

6.3.2 Overview  

6.3.3 Example LDF File 

6.3.4 Example Commands 

6.3.5 Expert Linker 

 

6.4 VisualDSP++ Simulator 

6.4.1 Overview 

6.4.2 Simulator Features 

6.4.3 Simulator Exercise: basic code development exercise  

 

7 Advanced Instruction Types 

7.1 Parallel Instruction Types and Multifunction Computations 

7.1.1 Conditional register swap example 

7.1.2 Data registers usage for multifunction computes 

7.2 Reciprocal and Divide 

7.3 Reciprocal Square Root and Square Root 

7.4 Simulator Exercise: code optimization 

 

8 SIMD Single Instruction Multiple Data 

8.1 Terms 

8.2 Features 

8.3 SISD vs SIMD 

8.4 Data Access 

8.5 SIMD Programming Models 

8.6 Status Flags 

8.7 Simulator Exercise: SIMD operation 
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9  ADSP-21160 I/O Processor Architecture 1 

9.1  Features 

9.2 IOP Structure  

9.2.1 IO Processor Features 

9.3 DMA Unit 

9.3.1 DMA Architecture 

9.3.2 DMA Features 

9.3.3 DMA modes & examples 

9.3.4 DMA Interrupts 

9.3.5 External Port DMA  

 

10 ADSP-21160 I/O Architecture 2 

10.1 External Port 

10.1.1 Memory Interface 

10.1.1.1 EP Configuration 

10.1.1.2 SBSRAM Interfacing Example 

10.1.1.3 Executing from External Memory 

10.1.2 Shared Bus Multiprocessing (Cluster mode) 

10.1.2.1 Bus Arbitration 

10.1.2.2 Interprocessor Data Transfers 

10.1.2.3 Semaphores 

10.1.3 Host Interface 

 

10.2 Link Port 

10.2.1 Link Features 

10.2.2 Link Pin Description & Function 

10.2.3 Link Configuration—DMA & Control 

10.2.4 Link Communications code example 
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10.3 Serial Port (SPORT) 

10.3.1 Sport Features 

10.3.2 Sport Pin Description 

10.3.3 Sport Modes  

10.3.4 Sport Configuration 

 

10.4 System Booting 

10.4.1 SHARC Powerup Boot 

10.4.2 Multiprocessor booting 

 

11 System Design 

11.1 Basic system configuration 

11.2 Navigating the Datasheet 

11.3 Design resources/guidelines 

11.4 JTAG Port overview 

 

 

12 Advanced LDF Features 

12.1 Shared Memory 

12.1.1 Definition 

12.1.2 Example 

12.2 Multi-Processing 

12.2.1 Definition 

12.2.2 Example 

12.3 Software Overlays 

12.3.1 What are Overlays? 

12.3.2 Defining Live and Run Spaces with LDF 

12.3.3 Overlay Operation 

12.3.4 Example 
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13 C Compiler Issues/Examples ANSI C Compiler: 

13.1 C Compiler Features and use in Embedded Systems 

13.2 Configuring C Compiler via IDDE 

13.3 Data Types 

13.4 LDF for C Compiler 

13.4.1 C and Section Names 

13.4.2 Example C Compilation to Assembly 

13.5 Stacks and Heaps 

13.6 Run Time Header 

13.6.1 Interrupt Handling with C Code 

13.7 Assembly Language Interface 

13.7.1 Register Usage and Data Types 

13.7.2 C Callable Assembly Functions 

13.7.3 C/Assembly Interface Example 

13.8 C Code Optimization  

13.8.1 C Code with SIMD  

13.8.2 Simulator Exercise: C coding and optimization 

 

14 ADSP-21160 Hardware Tools  

14.1 Hardware Tool Overview with part numbers 

14.2 ADSP-21160 EZ-Kit Lite  

14.2.1 Hardware 

14.2.2 Software 

14.3 JTAG ICE Emulators 

14.3.1 ICE Configurator 

14.3.2 ICE Debug Features 

 

15 Mini Quiz Answers 
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