

 ADST-120

Outline: System Development and Programming with the ADSP-21160

Course Name: System Development and Programming with the ADSP-21160
Course Number: ADST-120
Course Description: This is a practical course with ‘hands on’ training using the latest VisualDSP++ software

development tools. First the core elements of the processor, which includes the Computational
Units, the Data Address Generators, and the Program Sequencer, are examined in detail along with
the relevant assembly code instructions. A number of simulator labs help in understanding
operation of the individual elements. Memory configuration (both internal and external) is
discussed next. Advanced instructions are presented with a follow on lab on code optimization.
The I/O peripherals, which include the SPORTS, Link Ports, and External Port, are discussed in
detail along with DMA operation between these peripherals and internal memory. This section
also deals with system booting and SBSRAM interfacing. Hardware development tools, such as
evaluation boards and ICE’s are introduced. Throughout the course, the various aspects of the
software development process using the latest tools are discussed including setting up and building
projects, assembly language programming, code debugging, simulation, tool support for code
overlays and shared memory, and ‘C’ programming support.

Goals/Objectives: The main course objective is to understand the architecture of the ADSP-21160 DSP sufficiently to
enable DSP system designers to resolve hardware/software issues with their applications.
Additional goals include gaining a thorough understanding of both assembly language
programming and code development (including ‘C’ programming issues) with the latest software
tools

Pre-requisites: Previous embedded microprocessor background would be an asset (hardware and/or software)
Target Audience: System Designers needing to make informed decisions on design tradeoffs, Hardware Designers

needing to develop external interfaces, and Code Developers needing to know how to get the
highest performance from their algorithms

Target Duration: 3.5 days

ADST-120-OUT-V1.2.doc Page 1 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

1 Introduction

1.1 Introductions/ Course Overview

1.1.1 Purpose of the Course

1.1.2 Course Overview

1.1.3 Logistics (breaks, lunch, etc.)

1.1.4 Course Handouts

1.1.5 DSP at Analog

1.1.6 Analog Devices Strategy

1.1.7 Signal Processor Portfolio

1.2 Introduction to ADSP-21160

1.2.1 Characteristics of a Good DSP

1.2.2 ADSP-21000 Family Features

1.2.3 Modified Harvard Architecture

1.2.4 ADSP-21160 Basic System Configuration

2 Introduction to Software Tools (VisualDSP++)

2.1 VisualDSP Overview

2.2 Software Tools Overview

2.2.1 Development Flow

2.2.2 Invoking Tools and Switches

2.2.3 IDDE (Integrated Development/Debug Environment)

2.2.3.1 Features

2.2.3.2 Projects

2.2.3.3 Property Pages

2.2.3.4 Debug Sessions

2.2.3.5 Online Help

ADST-120-OUT-V1.2.doc Page 2 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

3 The ADSP-21K Family Core Architecture - Part I

3.1 The ADSP-21000 Family Core Internal Architecture

3.1.1 Registers and Data Types

3.1.2 Register types: UREG, SREG, DREG - overview

3.1.3 Register File

3.1.4 Native data types and data word alignment

3.1.5 Fixed point - 32 bit integer, fractional

3.1.6 Floating point - 32 bit single precision, 40 bit extended single precision

3.1.7 Simulator Exercise: registers exercise, basic simulator operation

3.2 ALU

3.2.1 Features

3.2.2 Instructions

3.2.3 Flags

3.2.4 Simulator Exercise: ALU operation

3.2.5 Mini-Quiz

3.3 Multiplier/MAC

3.3.1 Features

3.3.2 Instructions

3.3.3 Flags

3.3.4 Fractional and integer math

3.3.5 Simulator Exercise: MAC operation

3.3.6 Mini-Quiz

ADST-120-OUT-V1.2.doc Page 3 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

3.4 Shifter

3.4.1 Features

3.4.2 Instructions

3.4.3 Flags

3.4.4 Simulator Exercise: Shifter operation

3.4.5 Mini-Quiz

4 The ADSP-21K Family Core Architecture - Part II

4.1 Internal Core Architecture Review

4.2 Data Address Generators (DAGs)

4.2.1 Features

4.2.2 Instructions

4.2.3 Immediate data move instructions

4.2.4 Modulo addressing example

4.2.5 Simulator Exercise: DAG operation

4.2.6 Mini-Quiz

4.3 Program Sequencer

4.3.1 Features

4.3.2 Instructions

4.3.3 Instruction pipeline

4.3.4 Branching, Delayed branching

4.3.5 Zero overhead looping

4.3.6 Instruction cache, PM data access

4.3.7 Interrupts

4.3.8 Status and Mode registers / USTAT registers

4.3.9 System register bit operations

4.4 Timer

4.4.1 Features

ADST-120-OUT-V1.2.doc Page 4 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

5 Memory

5.1 SHARC Memory

5.1.1 SHARC Memory Basics

5.1.2 SHARC Memory Map

5.1.3 SHARC Internal Architecture

5.2 SHARC Internal SRAM

5.2.1 Internal SRAM Architecture

5.2.2 Memory Access Considerations

5.2.3 Internal Memory Maps

5.2.4 Configuring Internal Memory

5.2.4.1 32 bit vs 40 bit Data

5.2.4.2 48 bit Instructions

5.2.4.3 Mixing 32 bit and 48 bit words in one block

5.2.5 Example LDF Memory Section

6 Assembly Code Development with VisualDSP++

6.1 Project Development

6.1.1 Project Options

6.1.2 Build Configurations

6.1.3 Building Projects

6.2 Assembly

6.2.1 Build Process

6.2.2 Sections

6.2.3 Controlling Assembler through Directives and Operators

6.2.4 Preprocessor

6.2.5 Symbolic Names

ADST-120-OUT-V1.2.doc Page 5 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

6.3 Basic Linker Description File (LDF)

6.3.1 Introduction

6.3.2 Overview

6.3.3 Example LDF File

6.3.4 Example Commands

6.3.5 Expert Linker

6.4 VisualDSP++ Simulator

6.4.1 Overview

6.4.2 Simulator Features

6.4.3 Simulator Exercise: basic code development exercise

7 Advanced Instruction Types

7.1 Parallel Instruction Types and Multifunction Computations

7.1.1 Conditional register swap example

7.1.2 Data registers usage for multifunction computes

7.2 Reciprocal and Divide

7.3 Reciprocal Square Root and Square Root

7.4 Simulator Exercise: code optimization

8 SIMD Single Instruction Multiple Data

8.1 Terms

8.2 Features

8.3 SISD vs SIMD

8.4 Data Access

8.5 SIMD Programming Models

8.6 Status Flags

8.7 Simulator Exercise: SIMD operation

ADST-120-OUT-V1.2.doc Page 6 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

9 ADSP-21160 I/O Processor Architecture 1

9.1 Features

9.2 IOP Structure

9.2.1 IO Processor Features

9.3 DMA Unit

9.3.1 DMA Architecture

9.3.2 DMA Features

9.3.3 DMA modes & examples

9.3.4 DMA Interrupts

9.3.5 External Port DMA

10 ADSP-21160 I/O Architecture 2

10.1 External Port

10.1.1 Memory Interface

10.1.1.1 EP Configuration

10.1.1.2 SBSRAM Interfacing Example

10.1.1.3 Executing from External Memory

10.1.2 Shared Bus Multiprocessing (Cluster mode)

10.1.2.1 Bus Arbitration

10.1.2.2 Interprocessor Data Transfers

10.1.2.3 Semaphores

10.1.3 Host Interface

10.2 Link Port

10.2.1 Link Features

10.2.2 Link Pin Description & Function

10.2.3 Link Configuration—DMA & Control

10.2.4 Link Communications code example

ADST-120-OUT-V1.2.doc Page 7 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

10.3 Serial Port (SPORT)

10.3.1 Sport Features

10.3.2 Sport Pin Description

10.3.3 Sport Modes

10.3.4 Sport Configuration

10.4 System Booting

10.4.1 SHARC Powerup Boot

10.4.2 Multiprocessor booting

11 System Design

11.1 Basic system configuration

11.2 Navigating the Datasheet

11.3 Design resources/guidelines

11.4 JTAG Port overview

12 Advanced LDF Features

12.1 Shared Memory

12.1.1 Definition

12.1.2 Example

12.2 Multi-Processing

12.2.1 Definition

12.2.2 Example

12.3 Software Overlays

12.3.1 What are Overlays?

12.3.2 Defining Live and Run Spaces with LDF

12.3.3 Overlay Operation

12.3.4 Example

ADST-120-OUT-V1.2.doc Page 8 of 9

 ADST-120

Outline: System Development and Programming with the ADSP-21160

ADST-120-OUT-V1.2.doc Page 9 of 9

13 C Compiler Issues/Examples ANSI C Compiler:

13.1 C Compiler Features and use in Embedded Systems

13.2 Configuring C Compiler via IDDE

13.3 Data Types

13.4 LDF for C Compiler

13.4.1 C and Section Names

13.4.2 Example C Compilation to Assembly

13.5 Stacks and Heaps

13.6 Run Time Header

13.6.1 Interrupt Handling with C Code

13.7 Assembly Language Interface

13.7.1 Register Usage and Data Types

13.7.2 C Callable Assembly Functions

13.7.3 C/Assembly Interface Example

13.8 C Code Optimization

13.8.1 C Code with SIMD

13.8.2 Simulator Exercise: C coding and optimization

14 ADSP-21160 Hardware Tools

14.1 Hardware Tool Overview with part numbers

14.2 ADSP-21160 EZ-Kit Lite

14.2.1 Hardware

14.2.2 Software

14.3 JTAG ICE Emulators

14.3.1 ICE Configurator

14.3.2 ICE Debug Features

15 Mini Quiz Answers

	Introduction
	Introductions/ Course Overview
	Purpose of the Course
	Course Overview
	Logistics (breaks, lunch, etc.)
	Course Handouts
	DSP at Analog
	Analog Devices Strategy
	Signal Processor Portfolio

	Introduction to ADSP-21160
	Characteristics of a Good DSP
	ADSP-21000 Family Features
	Modified Harvard Architecture
	ADSP-21160 Basic System Configuration

	Introduction to Software Tools (VisualDSP++)
	VisualDSP Overview
	Software Tools Overview
	Development Flow
	Invoking Tools and Switches
	IDDE (Integrated Development/Debug Environment)
	Features
	Projects
	Property Pages
	Debug Sessions
	Online Help

	The ADSP-21K Family Core Architecture - Part I
	The ADSP-21000 Family Core Internal Architecture
	Registers and Data Types
	Register types: UREG, SREG, DREG - overview
	Register File
	Native data types and data word alignment
	Fixed point - 32 bit integer, fractional
	Floating point - 32 bit single precision, 40 bit extended single precision
	Simulator Exercise: registers exercise, basic simulator operation

	ALU
	Features
	Instructions
	Flags
	Simulator Exercise: ALU operation
	Mini-Quiz

	Multiplier/MAC
	Features
	Instructions
	Flags
	Fractional and integer math
	Simulator Exercise: MAC operation
	Mini-Quiz

	Shifter
	Features
	Instructions
	Flags
	Simulator Exercise: Shifter operation
	Mini-Quiz

	The ADSP-21K Family Core Architecture - Part II
	Internal Core Architecture Review
	Data Address Generators (DAGs)
	Features
	Instructions
	Immediate data move instructions
	Modulo addressing example
	Simulator Exercise: DAG operation
	Mini-Quiz

	Program Sequencer
	Features
	Instructions
	Instruction pipeline
	Branching, Delayed branching
	Zero overhead looping
	Instruction cache, PM data access
	Interrupts
	Status and Mode registers / USTAT registers
	System register bit operations

	Timer
	Features

	Memory
	SHARC Memory
	SHARC Memory Basics
	SHARC Memory Map
	SHARC Internal Architecture

	SHARC Internal SRAM
	Internal SRAM Architecture
	Memory Access Considerations
	Internal Memory Maps
	Configuring Internal Memory
	32 bit vs 40 bit Data
	48 bit Instructions
	Mixing 32 bit and 48 bit words in one block

	Example LDF Memory Section

	Assembly Code Development with VisualDSP++
	Project Development
	Project Options
	Build Configurations
	Building Projects

	Assembly
	Build Process
	Sections
	Controlling Assembler through Directives and Operators
	Preprocessor
	Symbolic Names

	Basic Linker Description File (LDF)
	Introduction
	Overview
	Example LDF File
	Example Commands
	Expert Linker

	VisualDSP++ Simulator
	Overview
	Simulator Features
	Simulator Exercise: basic code development exercise

	Advanced Instruction Types
	Parallel Instruction Types and Multifunction Computations
	Conditional register swap example
	Data registers usage for multifunction computes

	Reciprocal and Divide
	Reciprocal Square Root and Square Root
	Simulator Exercise: code optimization

	SIMD Single Instruction Multiple Data
	Terms
	Features
	SISD vs SIMD
	Data Access
	SIMD Programming Models
	Status Flags
	Simulator Exercise: SIMD operation

	ADSP-21160 I/O Processor Architecture 1
	Features
	IOP Structure
	IO Processor Features

	DMA Unit
	DMA Architecture
	DMA Features
	DMA modes & examples
	DMA Interrupts
	External Port DMA

	ADSP-21160 I/O Architecture 2
	External Port
	Memory Interface
	EP Configuration
	SBSRAM Interfacing Example
	Executing from External Memory

	Shared Bus Multiprocessing (Cluster mode)
	Bus Arbitration
	Interprocessor Data Transfers
	Semaphores

	Host Interface

	Link Port
	Link Features
	Link Pin Description & Function
	Link Configuration—DMA & Control
	Link Communications code example

	Serial Port (SPORT)
	Sport Features
	Sport Pin Description
	Sport Modes
	Sport Configuration

	System Booting
	SHARC Powerup Boot
	Multiprocessor booting

	System Design
	Basic system configuration
	Navigating the Datasheet
	Design resources/guidelines
	JTAG Port overview

	Advanced LDF Features
	Shared Memory
	Definition
	Example

	Multi-Processing
	Definition
	Example

	Software Overlays
	What are Overlays?
	Defining Live and Run Spaces with LDF
	Overlay Operation
	Example

	C Compiler Issues/Examples ANSI C Compiler:
	C Compiler Features and use in Embedded Systems
	Configuring C Compiler via IDDE
	Data Types
	LDF for C Compiler
	C and Section Names
	Example C Compilation to Assembly

	Stacks and Heaps
	Run Time Header
	Interrupt Handling with C Code

	Assembly Language Interface
	Register Usage and Data Types
	C Callable Assembly Functions
	C/Assembly Interface Example

	C Code Optimization
	C Code with SIMD
	Simulator Exercise: C coding and optimization

	ADSP-21160 Hardware Tools
	Hardware Tool Overview with part numbers
	ADSP-21160 EZ-Kit Lite
	Hardware
	Software

	JTAG ICE Emulators
	ICE Configurator
	ICE Debug Features

	Mini Quiz Answers

